

EFFECT OF IONIC FORM FORMATION ON SPECTRAL PROPERTIES AND PHOTOLYSIS OF BISPHENOLA

O. K. Bazyl*, E. N. Bocharnikova, O. N. Tchaikovskaya, G. V. Mayer

^aNational Research Tomsk State University, Tomsk, Russia *olga.k.bazyl@gmail.com

Object: Bisphenol A

Bisphenol A (4,4'-dihydroxy-2,2-diphenylpropane or BPA) is a chemical of the phenol derivatives.

Bisphenol A is an organic molecule that is produced by a condensation reaction between acetone and phenol, catalyzed by an acid or resin.

Fig 1. The structural formulas of the neutral complex BPA with water of the composition 1: 2 (a), the BPA cation (q = +2e) (b), and the anion $(q = -1e) + 2H_2O$ (c)

Potential curves of the ground

The aim of the work

Search for ways of effective degradation of BPA to reduce the risk of harmful effects on the environment and humans.

Applications

Bisphenol A is used in the following industries:

✓ construction

✓ manufacture of electrical engineering

✓ medicine

✓ engineering

✓ food industry

Experimental and theoretical characteristics of absorption spectra

Table 1. Experimental and theoretical characteristics of absorption spectra of a complex with water and charged forms of bisphenol A in water

Calculation				Experiment		
State	<i>Ei</i> , cm ⁻¹	λ_i , nm	f	<i>Ei</i> , cm ⁻¹	λ_i , nm	ε, l/mol×cm
	BPA -	+ 2H ₂ O co	omplex (n	eutral form)	
$S_1(\pi\pi^*)$	34040	294	0.054	35100	285	2000
$S_2(\pi\pi^*)$	34990	286	0.048	36230	276	3000
$S_3(\pi\sigma^*_{5-8-11})$	36890	271	0.012			
$S_4(\pi\pi^*)$	38090	262	0.244			
$S_{9}(\pi\pi^{*})$	44700	224	0.071	44440	225	15000
$S_{11}(\pi\pi^*)$	45340	220	0.509			
$S_{12}(\pi\pi^*)$	45805	218	0.552			
	BP	PA (BPA +	$2H^+H_2O$	q = +2e		
$S_1(\pi\pi^*)$	34640	289	0.040	35210	284	2000
$S_2(\pi\pi^*)$	35720	280	0.048	36230	276	3000
$S_3(\pi\sigma^*_{5-8-11})$	38510	242	0.035			
$S_4(\pi\pi^*)$	39680	252	0.256			
$S_5(\pi\pi^*+\pi\sigma^*)$	44660	224	0.140	44440	225	11000
$S_6(\pi\pi^*)$	45540	220	0.854			
	В	PA (BPA	+ 2H ₂ O, 0	q = -1e)		
$S_1 (\pi \pi^* + \pi \sigma^*_{5-8})$	33200	301	0.020	33110	302	4000
$S_2(\pi\pi^*)$	33530	298	0.106			
$S_3(\pi\pi^*)$	35460	282	0.065	34250	292	5000
$S_6(\pi\pi^* + \pi\sigma^*_{5-8})$	39250	255	0.211	40480	247	20000
$S_8(\pi\pi^*)$	41190	243	0.086			
$S_{13}(\pi\pi^*)$	43680	244	0.244			

*Bocharnikova E.N., Bazyl O.K., Tchaikovskaya O.N., Mayer G.V. // Optics and Spectroscopy. 2021. V. 129 (5). DOI: 10.21883/OS.2021.05.50879.270-20.

Results

- the absorption spectra of charged forms do not contain new absorption bands in the region of 200-600 nm, in comparison with an isolated molecule.
- the low quantum yield of fluorescence of BPA and its charged forms is due to the significant prevalence of the efficiency of the singlet-triplet conversion channel over the efficiency of the radiation channel of decay of the fluorescent state.
- the efficiency of photolysis of the BPA cation under the influence of solar radiation is lower than in the case of the BPA + $2H_2O$ complex, as a consequence of an increase in the potential barrier.